Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pest and disease management: why we shouldn't go against the grain.

Identifieur interne : 001256 ( Main/Exploration ); précédent : 001255; suivant : 001257

Pest and disease management: why we shouldn't go against the grain.

Auteurs : Peter Skelsey [Royaume-Uni] ; Kimberly A. With ; Karen A. Garrett

Source :

RBID : pubmed:24098739

Descripteurs français

English descriptors

Abstract

Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.

DOI: 10.1371/journal.pone.0075892
PubMed: 24098739
PubMed Central: PMC3786923


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pest and disease management: why we shouldn't go against the grain.</title>
<author>
<name sortKey="Skelsey, Peter" sort="Skelsey, Peter" uniqKey="Skelsey P" first="Peter" last="Skelsey">Peter Skelsey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Information and Computational Sciences, James Hutton Institute, Dundee, Scotland, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Information and Computational Sciences, James Hutton Institute, Dundee, Scotland</wicri:regionArea>
<wicri:noRegion>Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="With, Kimberly A" sort="With, Kimberly A" uniqKey="With K" first="Kimberly A" last="With">Kimberly A. With</name>
</author>
<author>
<name sortKey="Garrett, Karen A" sort="Garrett, Karen A" uniqKey="Garrett K" first="Karen A" last="Garrett">Karen A. Garrett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24098739</idno>
<idno type="pmid">24098739</idno>
<idno type="doi">10.1371/journal.pone.0075892</idno>
<idno type="pmc">PMC3786923</idno>
<idno type="wicri:Area/Main/Corpus">001200</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001200</idno>
<idno type="wicri:Area/Main/Curation">001200</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001200</idno>
<idno type="wicri:Area/Main/Exploration">001200</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pest and disease management: why we shouldn't go against the grain.</title>
<author>
<name sortKey="Skelsey, Peter" sort="Skelsey, Peter" uniqKey="Skelsey P" first="Peter" last="Skelsey">Peter Skelsey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Information and Computational Sciences, James Hutton Institute, Dundee, Scotland, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Information and Computational Sciences, James Hutton Institute, Dundee, Scotland</wicri:regionArea>
<wicri:noRegion>Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="With, Kimberly A" sort="With, Kimberly A" uniqKey="With K" first="Kimberly A" last="With">Kimberly A. With</name>
</author>
<author>
<name sortKey="Garrett, Karen A" sort="Garrett, Karen A" uniqKey="Garrett K" first="Karen A" last="Garrett">Karen A. Garrett</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal Distribution (physiology)</term>
<term>Animals (MeSH)</term>
<term>Coleoptera (physiology)</term>
<term>Communicable Diseases (epidemiology)</term>
<term>Culex (physiology)</term>
<term>Disease Management (MeSH)</term>
<term>Disease Vectors (MeSH)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Pest Control (methods)</term>
<term>Phytophthora infestans (physiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Pseudomonas syringae (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Coléoptères (physiologie)</term>
<term>Culex (physiologie)</term>
<term>Interactions hôte-pathogène (physiologie)</term>
<term>Lutte contre les nuisibles (méthodes)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies transmissibles (épidémiologie)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Phytophthora infestans (physiologie)</term>
<term>Prise en charge de la maladie (MeSH)</term>
<term>Pseudomonas syringae (physiologie)</term>
<term>Répartition des animaux (physiologie)</term>
<term>Vecteurs de maladies (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Communicable Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Pest Control</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Lutte contre les nuisibles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coléoptères</term>
<term>Culex</term>
<term>Interactions hôte-pathogène</term>
<term>Phytophthora infestans</term>
<term>Pseudomonas syringae</term>
<term>Répartition des animaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Animal Distribution</term>
<term>Coleoptera</term>
<term>Culex</term>
<term>Host-Pathogen Interactions</term>
<term>Phytophthora infestans</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Maladies transmissibles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Management</term>
<term>Disease Vectors</term>
<term>Models, Theoretical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles théoriques</term>
<term>Prise en charge de la maladie</term>
<term>Vecteurs de maladies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24098739</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Pest and disease management: why we shouldn't go against the grain.</ArticleTitle>
<Pagination>
<MedlinePgn>e75892</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0075892</ELocationID>
<Abstract>
<AbstractText>Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skelsey</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Information and Computational Sciences, James Hutton Institute, Dundee, Scotland, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>With</LastName>
<ForeName>Kimberly A</ForeName>
<Initials>KA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garrett</LastName>
<ForeName>Karen A</ForeName>
<Initials>KA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D063147" MajorTopicYN="N">Animal Distribution</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003141" MajorTopicYN="N">Communicable Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003465" MajorTopicYN="N">Culex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019468" MajorTopicYN="Y">Disease Management</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004199" MajorTopicYN="Y">Disease Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010571" MajorTopicYN="N">Pest Control</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24098739</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0075892</ArticleId>
<ArticleId IdType="pii">PONE-D-13-19300</ArticleId>
<ArticleId IdType="pmc">PMC3786923</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Math Biosci. 1991 Apr;104(1):135-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1804452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Oct 28;401(6756):911-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10553906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Mosq Control Assoc. 1994 Jun;10(2 Pt 2):272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8965079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Aug;13(6):614-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 1993 Dec;49(6):677-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8279635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Apr;95(4):328-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Health Geogr. 2010 Feb 24;9:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 May 07;3(5):e2093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18461173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Jun;20(6):328-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Apr;173(4):456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Jan;90(1):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e36687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Mar;99(3):290-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 1962 Jan;11:115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13905653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2012 Nov 1;160(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23141646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jul;99(7):887-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2011 Mar;21(2):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21563564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:381-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Risk Anal. 2004 Aug;24(4):803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15357801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 19;5(4):e10224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2001 Jul;158(1):87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 1965 Nov;9(4):530-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5855812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Ecol. 2013;6:203-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25540676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Nov;100(11):1146-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20932163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2001 May;157(5):537-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1998 Aug;152(2):204-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Entomol Res. 1969 Dec;59(3):441-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4393126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2012 Mar;75(3):472-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22410220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Sep 1;2(5):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Garrett, Karen A" sort="Garrett, Karen A" uniqKey="Garrett K" first="Karen A" last="Garrett">Karen A. Garrett</name>
<name sortKey="With, Kimberly A" sort="With, Kimberly A" uniqKey="With K" first="Kimberly A" last="With">Kimberly A. With</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Skelsey, Peter" sort="Skelsey, Peter" uniqKey="Skelsey P" first="Peter" last="Skelsey">Peter Skelsey</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001256 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001256 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24098739
   |texte=   Pest and disease management: why we shouldn't go against the grain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24098739" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024